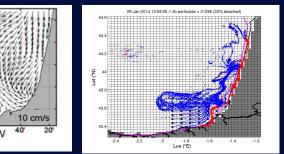

HR Radar Users Workshop

CMEMS Service Evolution INCREASE project Copernicus Marine Week - Sep 26, 2017 - Bruxelles


HF Radar application for marine litter management: LIFE LEMA project

A. Declerck¹, <u>M. Delpey</u>¹, P. Pouyssegur¹, A. Rubio², L. Ferrer², O. Cabezas², J. Mader²

1 : Center Rivages Pro Tech of SUEZ, Bidart, France 2 : AZTI Technalia, Pasaia, Spain

M. Delpey – Center Rivages Pro Tech of SUEZ matthias.delpey@rivagesprotech.fr

Introduction

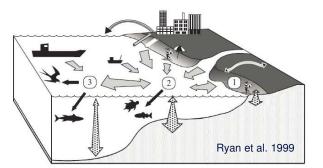
The Marine Litter issue

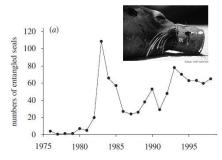
O Marine litter is one of the main ocean pollutions related to human activities

- **Plastic**, fishing nets, sanitary wastes, etc.
- 10 Mtn of marine litter in the ocean every year (European Environment Agency)
- Plastic waste = 60-80% of world's litter → 10% ends up into the oceans (Derraik 2002)
- Main inputs: beaches, rivers, storm water runoff, wastewater discharges (Ryan et al. 1999)
- UNEP 2005: 15% beach onshore (1), 15% drift in the surface ocean (2), 70% sink toward the deeper ocean after drifting in the surface layer (3)

O Many impacts

Environment & Ecology


- Ingestion by fishes, turtles, marine mammals + entanglement, impede fish movement
- Contaminant fixation on plastic wastes (e.g. bacteria), degradation toward microplastic


Economy

- Touristic activities, recreational use of beaches
- Obstacles for navigation
- Significant cost of litter collection onshore/offshore → ~350 M€/year for EU coasts

O Marine Strategy Framework Directive targets marine litter (Directive 2008/56/CE)

- Good ecological state to be reached in 2020
- Descriptor #10 → Marine litter

opernicus

© Peter Legler / UNEP / Still Pictures

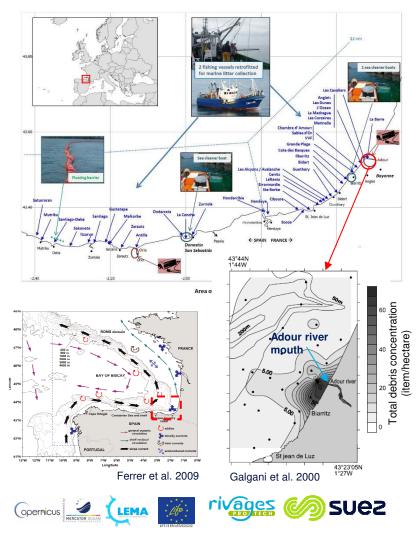
Introduction

LIFE LEMA project

O Funded by the EU LIFE program. Duration: 2016-2019

Objectives

- Support FML management by local authorities → collection operations, source identification, collected waste valorization
- Improve knowledge about FML dynamics in the coastal area → Metocean tools
- Improve offshore collection efficiency → Fishing vessels, FML hotspot targeting, routing optimization
- Anticipate onshore arrivals


Focus on

- Macro-litter (typical size > 20 cm)
- Floating Marine Litter → Coastal area
- Beached Marine Litter → Nearshore/Onshore areas
- Study area: SE Bay of Biscay (Spain/France)

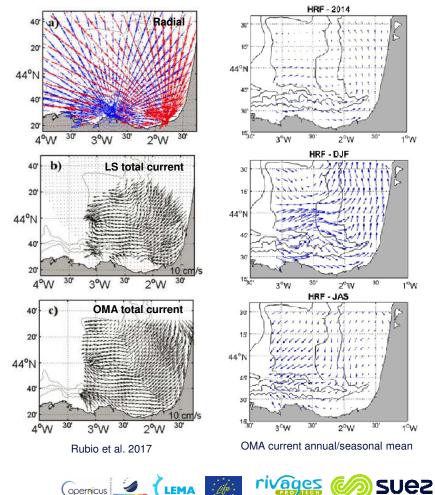
Partners

- Deputacion Floral de Gipuzkoa → Leader
- Agglomeration CAPB (Kosta Garbia), Biarritz city
- AZTI Tecnalia, SUEZ center Rivages Pro Tech
- Surfrider Foundation Europe

Data

Surface current fields from HF Radar system

- C Euskalmet HFR system operated by AZTI Tecnalia
- O Two antennas on the Spain north coast
- O Data processing (see Rubio et al. 2017)
 - Least Square (LS) algorithm
 - OMA method


Surface current fields

- Current velocity components U,V
- Area: [-3.2°E,-1.2°E], [43.27°N,44.58°N]
- Regular horizontal grid 5 x 5 km
- Hourly data

tecnalia

1°W

1°W

1°W

Surface current field from Copernicus model

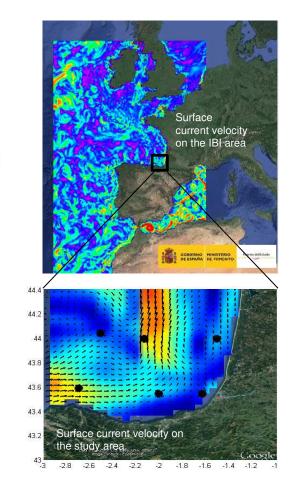
O IBI Ocean Analysis and Forecasting system

(CMEMS product: IBI_ANALYSIS_FORECAST_PHY_005_001_b)

- NEMO hydrodynamic model forecast and analysis
- Variables available: water level, currents, temperature, salinity

opernicus

O Variable used: 3D or 2D surface current velocity field

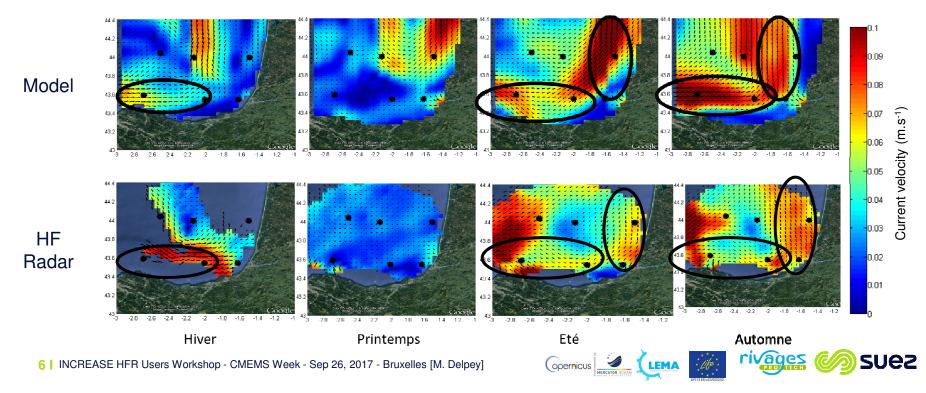

O Model grid

- Horizontal: regular grid 2 x 2 km
- Vertical: 50 vertical layers (cartesian)

O Time step (hindcast data)

O Daily 3D fields

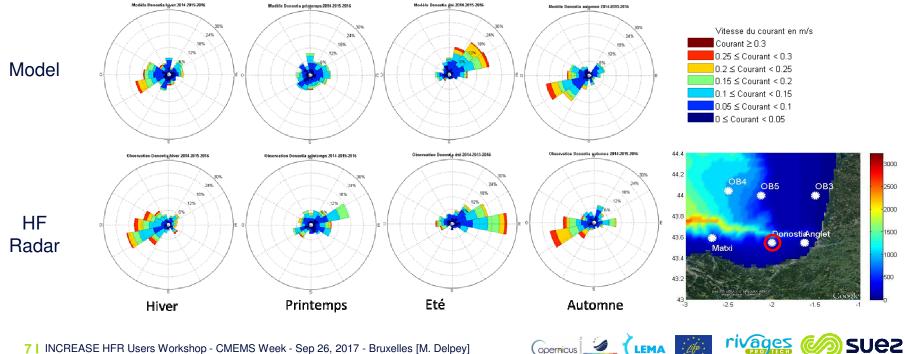
O Hourly 2D surface fields



Model-data comparison

Surface current fields: Eulerian comparison

O Copernicus model v.s. HF Radar velocity fields based on 3 years of data (2014-2015-2016)



Model-data comparison

Surface current fields: Eulerian comparison

Copernicus model v.s. HF Radar velocity fields based on 3 years of data (2014-2015-2016)

7 INCREASE HFR Users Workshop - CMEMS Week - Sep 26, 2017 - Bruxelles [M. Delpey]

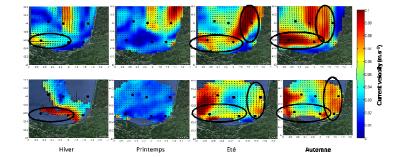
Model-data comparison

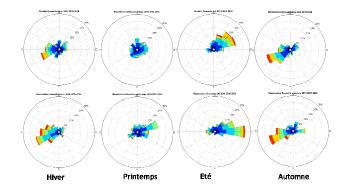
Surface current fields: Eulerian comparison

Copernicus model v.s. HF Radar velocity fields based on a 3 years control period (2014-2015-2016)

O Encouraging model-data agreement

- Fair agreement in deep water
- Reasonnable representation of the slope current
- Several major seasonal patterns captured over the shelf


O However significant differences remain


- Spring regime
- Position and extension of the slope current
- Important local differences over the inner shelf

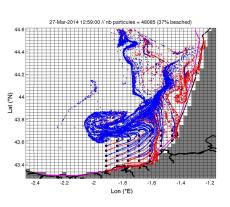
Questions

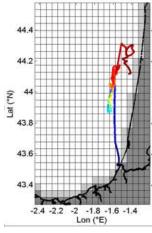
- ightarrow What is the impact of these differences for the study of surface transport ?
- ightarrow Can IBI model be used to simulate/forecast FML transport ?

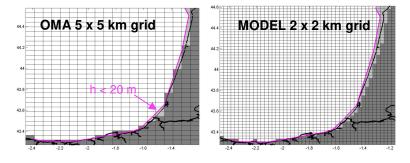
\rightarrow Use of a Lagrangian approach

Lagrangian Transport Model

Lagrangian modelling of ocean surface transport


- MOHID Water modelling system (Martins et al. 2001; Braunschweig et al. 2004)
 Lagrangian transport module (Leitão 1996)
 - O Main functionalities
 - 2D or 3D tracers advection by multiple current fields
 - Turbulent mixing effects: diffusion (Allen 1982) + dilution (volume increase)


MARETEC HIDROMOD


- Allows to account for direct wind effect at the surface
- Intertidal areas management
- Properties transport (water quality, etc.)

\bigcirc Implementation for this study

- 2D advection by surface current fields from HFR and Copernicus
- Horizontal diffusion (depending on the simulation)
- Zero direct wind effet
- Specific post-processing procedure to account for beaching possibility in the nearshore
- O Tracers release
 - Costal area release: on a regularly spaced grid, 1 particle/hour
 - **River mouth release**: in front of the Adour river mouth, depending on river flow
- ightarrow 3 months test simulation (winter regime)

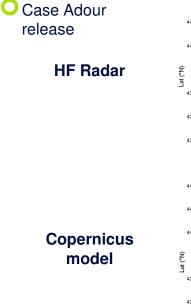
-1.6

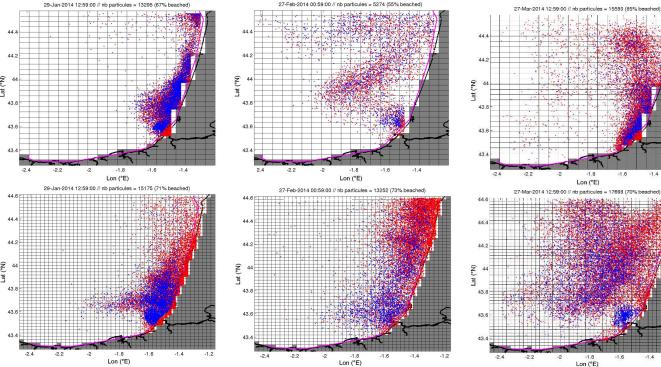
-1.6

rivages

-1.4

-1.2


SUez


-1.4

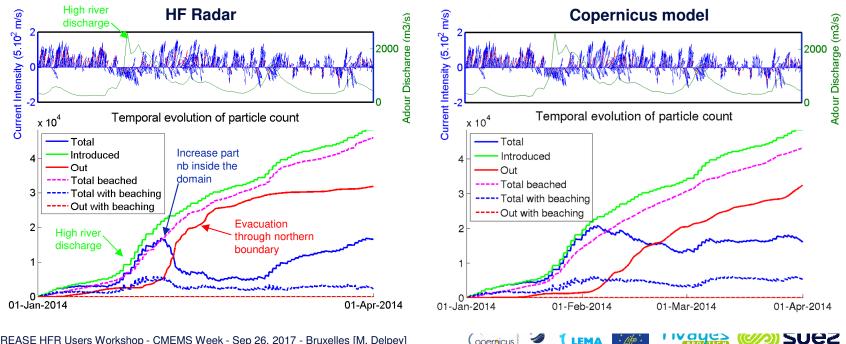
Lagrangian analysis

Lagrangian modelling of ocean surface transport

Potentially Beached // Never on littoral points

(opernicus

MERCATOR



Lagrangian analysis

Global tracers balance in/out the domain

Time evolution at the scale of the domain - Case Adour release

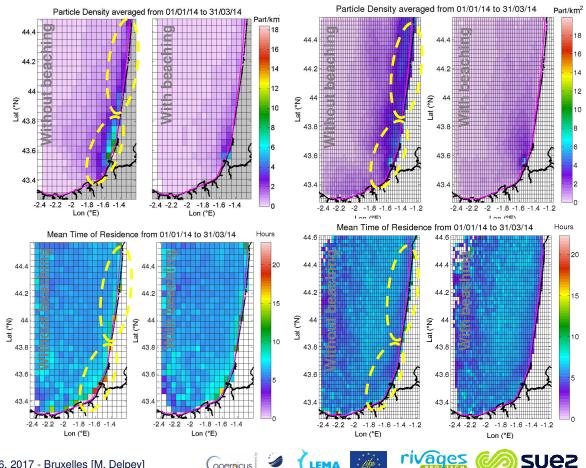
(opernicus

Lagrangian analysis

Adour river release

Density maps

O


Residence Time maps

HF Radar

Copernicus model

(opernicus

MERCATOR

HF Radar

Particles Age and Trajectory

44

43.8

43.6

43.4

13 | INCREASE HFR Users Workshop - CMEMS Week - Sep 26, 2017 - Bruxelles [M. Delpey]

-2.4 -2.2 -2 -1.8 -1.6 -1.4

Lon (°E)

Lagrangian analysis

Mean trajectories

Lat (°N) 45

43.8

43.6

43.4

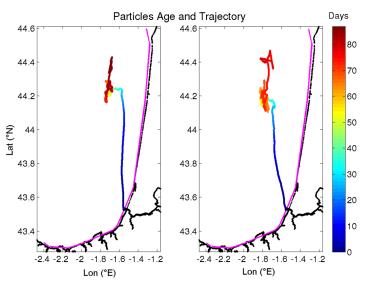
7

-2.4 -2.2 -2 -1.8 -1.6 -1.4

Lon (°E)

O Case Adour river release (with diffusion). Specific time period or meteocean regime

Days


50

40

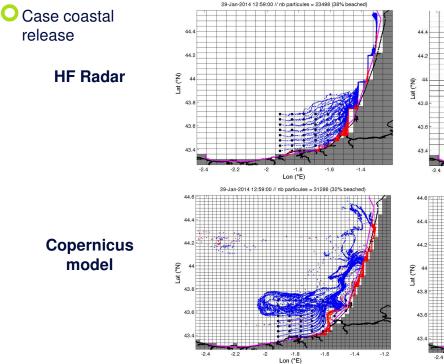
30

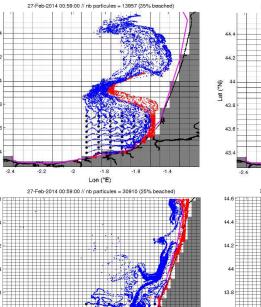
20

10

(opernicus

rivages


uez



Lagrangian analysis

Lagrangian modelling of ocean surface transport

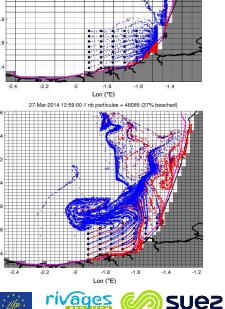
Potentially Beached // Never on littoral points

-2.2

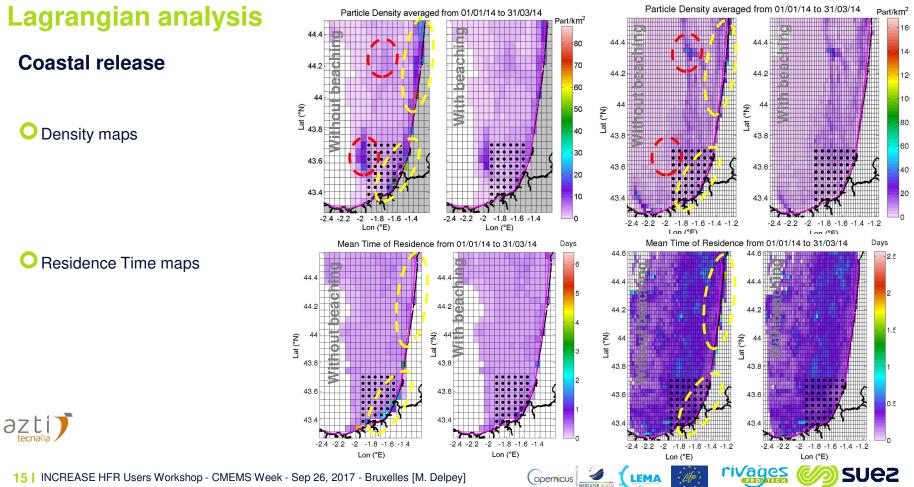
.2

-1.8

opernicus


Lon (°E)

-1.6


MERCATOR

-14

-12

Mar-2014 12:59:00 // nb particules = 41578 (88% beached)

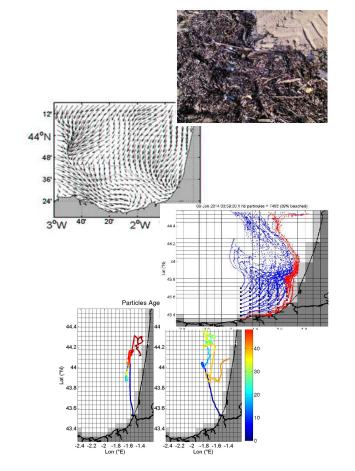
HF Radar

Copernicus model

15 INCREASE HFR Users Workshop - CMEMS Week - Sep 26, 2017 - Bruxelles [M. Delpey]

Conclusions

The support of HFR data for the study FML transport

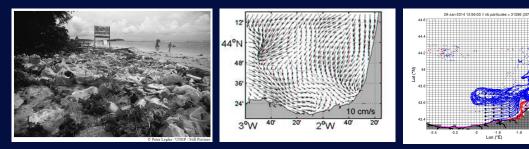

- Eulerian comparison of HFR with Copernicus IBI surface currents gives encouraging results (3 years control period)
 - \rightarrow What about the use of IBI model for FML transport ? \rightarrow Lagrangian approach

Cagrangian transport model forced by HFR or Copernicus currents

- Results analysis and comparison based on different diagnostics: 3 months test period
- Reasonable HFR/Copernicus results global agreement...
- ...but significant local differences, especially for the coastal release case
- Emphasizes important role of the nearshore area:
 - exchanges between nearshore and coastal area
 - beaching process

O Further work

- Lagrangian HFR / Copernicus comparison over the 3 years control period
- Lagrangian model validation against observations: drifters, surface ocean colour images
- Downscaling Copernicus solution to solve nearshore dynamics
- Work on **beaching parameterization**



HR Radar Users Workshop

CMEMS Service Evolution INCREASE project Copernicus Marine Week - Sep 26, 2017 - Bruxelles

HF Radar application for marine litter management: LIFE LEMA project

Thanks for your attention !

M. Delpey – Center Rivages Pro Tech of SUEZ matthias.delpey@rivagesprotech.fr